Simulation of Wave Propagation Along Fluid-Filled Cracks Using High-Order Summation-by-Parts Operators and Implicit-Explicit Time Stepping
نویسندگان
چکیده
We present an efficient, implicit-explicit numerical method for wave propagation in solids containing fluid-filled cracks, motivated by applications in geophysical imaging of fractured oil/gas reservoirs and aquifers, volcanology, and mechanical engineering. We couple the elastic wave equation in the solid to an approximation of the linearized, compressible Navier–Stokes equations in curved and possibly branching cracks. The approximate fluid model, similar to the widely used lubrication model but accounting for fluid inertia and compressibility, exploits the narrowness of the crack relative to wavelengths of interest. The governing equations are spatially discretized using high-order summation-by-parts finite difference operators and the fluid-solid coupling conditions are weakly enforced, leading to a provably stable scheme. Stiffness of the semidiscrete equations can arise from the enforcement of coupling conditions, fluid compressibility, and diffusion operators required to capture viscous boundary layers near the crack walls. An implicit-explicit Runge–Kutta scheme is used for time stepping, and the entire system of equations can be advanced in time with high-order accuracy using the maximum stable time step determined solely by the standard CFL restriction for wave propagation, irrespective of the crack geometry and fluid viscosity. The fluid approximation leads to a sparse block structure for the implicit system, such that the additional computational cost of the fluid is small relative to the explicit elastic update. Convergence tests verify highorder accuracy; additional simulations demonstrate applicability of the method to studies of wave propagation in and around branching hydraulic fractures.
منابع مشابه
Wave Evolution in Water Bodies using Turbulent MPS Simulation
Moving Particle Semi-implicit (MPS) which is a meshless and full Lagrangian method is employed to simulate nonlinear hydrodynamic behavior in a wide variety of engineering application including free surface water waves. In the present study, a numerical particle-based model is developed by the authors using MPS method to simulate different wave problems in the coastal waters. In this model flui...
متن کاملA case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملStable and accurate wave-propagation in discontinuous media
A time stable discretization is derived for the second-order wave equation with discontinuous coefficients. The discontinuity corresponds to inhomogeneity in the underlying medium and is treated by splitting the domain. Each (homogeneous) sub domain is discretized using narrow-diagonal summation by parts operators and, then, patched to its neighbors by using a penalty method, leading to fully e...
متن کاملA General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity
In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...
متن کاملWave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells
Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 39 شماره
صفحات -
تاریخ انتشار 2017